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Abstract 

We address Standard Model predictions for flavor-changing radiative transitions 
of the pseudoscalar charm mesons. Short-diitance contributions in’ D radiative 
transitions are contrasted with those in B decays. The first full analysis of QCD 
radiative corrections for the c -+ u + 7 electromagnetic penguin amplitude is pre- 
sented. Given the importance of long-range effects for the charm sector, special 
attention ia paid to such contributions as the vector dominance and pole ampli- 
tudes. A number of two-body final states in charm radiative decays is considered 
and the corresponding branching ratio predictions are given. 
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I Introduction - 

important milestones in the study of the &quark system were reached with 
the recent observations of bor.1 the exclusive decay E * K’@ 

BE-K., = (4.5 f 1.5 f 0.9) x ill-’ , (1) 

and of the inclusive transition Ql 

Bb-” = (2.32 f 0.57 i 0.35) x lo-’ . (2) 

To first approximation, these flavor-changing radiative decays can be inter- 
preted at the quark level in terms of the b - ST transition. The Standard 
Model allows for such a process by means of a one-loop penguin-type ampli- 
tude. Within errors, agreement of the measured branching ratios and Stan- 
dard Model predictions appears to be reasonable. The small magnitudes of 
these branching ratios indicate just how sensitive experimental probes of b 
quark hadrons have become. However, an outstanding question is the size of 
the long distance contrlbutions[3, 41 to such radiative P decays relative to 
the short distance penguin amplitude. This issue must addressed in order 
to establish the viabiity of determining the value of the r-tio of CKM matrix 
elements, It;,J/lVt,I, from a measurement of the ratio of exclusive branching 
fractions BB-~/BB-K*-,. 

Important as they arc, the above measurements by no means exhaust 
the set of interesting problems. It has become increasingly evident that 
the database for charm hadrons is also in a state of rapid expansion, and 
that physically important levels of sensitivity are being achieved. Perhaps 
the most impressive example of this to-date is the recent observation of the 
nonleptonic decay Do t K+x-, with branching ratioI 

BDLK+~- 

BDLK-r+ 
= 0.0077 zt 0.0025 dc 0.0025 . (3) 

This transition has been interpreted as evidence of a doubly Cabibbo sup- 
pressed transition rather than of Do-do mixing. 

The discussion in this paper wiII be directed towards a somewhat different 
aspect of charm physics, the flavor-changing radiative decays. These trsnsi- 
tions rcqnire the joint occurrence of weak and electromagnetic interactions. 
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From Table 1[61*[71*[8], we see that no such events (involving emission of real 
or virtual photons) have yet been observed. However, these decays are an 
active area of study, and data gathered in ongoing fixed-target experiments 
are establishing markedly improved bounds. Our objective in the analysis 
to follow wiU be to provide up-to-date predictions for flavor-changing ra- 
diative transitions of charm systems. Since the experimental situation for 
charm mesons is at present more favorable than for charm baryons, we shaii 
,restrict our attention to the former. Even with this restriction, it is a taU 
order to supply accurate theoretical values. It has become evident over a 
long period of time that theoreticai calculations of D-meson weak decays are 
not particularly trustworthy, due in part to the absence of a rapidly conver- 
gent approximation scheme and also to the presence of significant hadron 
dynamical effects in the D meson mass region. Despite this, we feel that one 
can make some definite statements, such as the relative importance of long- 
range and short-range effects and of the various types of finai states which can 
reasonably be anticipated. We shall base our analysis on a variety of theoret- 
ical techniques, from operator-product expansion and renormalization-group 
methods to more phenomenological approaches like vector-meson-dominance 
(VMD). Measurement of radiative charm decays would probe the long dis- 
tance contributions and thus provide further insight in the extrapolation of 
calculational techniques to the B sector. 

Table 1 Status of Electroweak-induced Charm Decays 

Mode Branching Ratio 
Do + p”~ < 1.4 x 10-J 
Do -t 4”~ < 2.0 x lo-’ 
Do - @‘e+e- < 1.7 x 10-s 
DO + p%T+e- < 4.5 x 10-d 
Do + p”p+p- < 8.1 x 10-A 
D+ + r+e+e- < 2.5 x 10-s 
D+ + n+p+p- < 2.9 x 10-s 
DC + Kfefe- < 4.8 x 10-s 
D+ + K+p+p- < 9.2 x 10-s 

Let us summarize the contents to follow. In Section 2, we consider the 
short-range component in radiative charm decays, primarily the charm coun- 
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terpart of the penguin amplitude which dominates the radiative B-meson 
decays. In addition to addressing c-quark physics, our analysis contains a 
purely theoretical advance by removing an unnecessary assumption made in 
earlier studies involving b-quark applications. Section 3 begins our analysis 
of the so-called ‘long-distance’ contributions with an analysis of pole dia- 
grams, which are induced by the weak mixing of pseudoscalar and/or vector 
charm mesons with noncharm states. In Section 4, we continue our study 
of long distance dfects by turning our attention to a study of VMD ampll- 
tudes. Our conclusions and recommendations for future studies are given in 
Section 5. There is also an Appendix in which the applicability of VMD to 
certain light-meson decays is commented on. 

2 Short Distance Contributions 

Examples of diagrams which mediate the short-distance transition arnpli- 
tudes for radiative charm decay are depicted in Fig. 1. They have in com- 
mon that the photon emission occurs in a region of spacetime determined 
by the propagator of the W-boson. In view of the large W-mass Mw, this 
region has a very limited extent compared to the length scale of the.strong 
interactions, hence the name ‘short-distance’. Looking ahead, our conclusion 
regarding such short-distance amplitudes will be that in radiative decays of 
charm mesons they are small relative to long-distance effects, even though 
they receive large enhancements from QCD corrections. As described earlier, 
this is of course in stark contrast to B decay. 

c-.$g-. ;,; cJ&cu 

v 
i i % i i 

III *, n 

Figure 1. Short-distance Effects 
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In recognition of the importance attached to the electromagnetic penguin 
transition in radiative B decays, we give a brief pedagogical comparison 
between the role played by this effect for B and for D decay. The two 
transitions in question are given at the quark-level by 

bb, A) + S(P’r A’) + 7(% 0) 

c(p9 A) + u(p’,X’) + r(s,o) (4) 

To highlight the crucial role played by the quark masses and CKM matrix 
elements, let us at first ignore the effect of QCD radiative corrections. The 
relevant Feynman diagrams are then depicted in Figs. l(a),l(c) and the pen- 
guin amplitude for the transition of a heavy quark Q to a much lighter quark 
4 and an on-shell photon is given bylgl 

f$$ F WZ(Zi) %(P’r X’)p+(q,X)Q~“qY[mqPR + rn,P‘]U&, A) , 

where PR(L) are the right(left)-handed helicity projection operators, zi E 
mf/M\zy, Xi s I’&-%, for A-.., and Ai E Vci’Vui for A-.,. The function Fr 
gives the contribution of each internal quark to the electromagnetic penguin 

loop, 

Q [ r34;z5:l)J2r 2;;2$4 1 223 
+ 

522 - z 
323 In + + + - 4(” - 1)s 2(” - 1)4 ’ (6) 

with Q being the charge of the internal quark. For b - ~7 the sum is carried 
out over the quarks u,c,t and the term proportional to the !-quark mass in 
Eq. (5) is generally neglected, whereas for c + ~7, one sums over the quarks 
d, s, b and ignores the corresponding term proportional to the u-quark mass. 

Let us get acquainted with some of the numerical values. In Table 2, 
we first display the magnitude of the function Fz and then fold in the CKM 
dependence for the b + ~7 transition (we take m, = 5 MeV, m, = 1.5 GeV, 
ml = 174 GeV, and the central values of the CKM matrix elements as given 
in Ref. [S]). 
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Table 2 Contributions to b + s + 7 

Quark Fs Ivib~,‘lfi 
u 2.27 x 1O-g 1.29 x 10-l’ 
c 2.03 x lo-” 7.34 x 10-s 
t 0.39 1.56 x 1O-2 

Dominance of the t-quark intermediate state is evident, even upon including 
the CKM factors. Its effect is so large that the other intermediate states are 
numerically negligible and hence are typically omitted. The corresponding 
situation is given for c + u7 in Table 3 (with md = 11 MeV, m. = 150 MeV, 
and rnb = 4.9 GeV). 

Table 3 Contributions to c + u + 7 

Quark F2 IV,i’KilJ’2 
d 1.57 x 10-s 3.36 x 10-l’ 
* 2.92 x lo-’ 6.26 x 10-s 
b 3.31 x 10-d 3.17 x 10-s 

The amplitude for c + u7 differs from that of b + s7 in two important 
respects, (i) there is no single intermediate state which dominates, and (ii) 
the overall magnitude is much smaller. 

$0) 
Neglecting the final state fermion mass, the QCD uncorrected decay rate 

Q-a is given by 

To obtain the branching fraction, the inclusive rate is scaled to that of the 
semi-leptonic decay Q -P q’lv. This procedure removes uncertainties in the 
calculation due to the overall factor of rn& which appears in both expressions, 
and reduces the ambiguities involved with the imprecisely determined CKM 
factors. Taking the above numerical values for the internal quark masses, and 
using the values of the semi-leptonic branching ratios as given in Ref. [6], this 
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yields 

B 
3a Iv;bv,;F,(d12 

b-s-7 = ig’ 
Iv&l2 [d”hb) + j$j&%/-b)] ’ BB-A’L,’ 

B 
3a IV;fLF2(=.) + v~v,bF,(~b)12 

c-u, = 

Here, the function g(z) is the usual phase space factor in semi-leptonic me- 
son decay, where constituent values of the final-state quark masses have been 
used.[lOl The QCD uncorrected c + u7 transition is seen to have an unob- 
servably small branching fraction. 

We next examine the impact of the QCD radiative corrections on the 
above branching ratios. We begin by reviewing the calculation for the b + s7 
transition, which will serve as the foundation of our subsequent discussion of 
c + ~7. The QCD corrections are calculated[lls ‘21 via an operator product 
expansion based on the effective hamiltonian 

&Q4=1 = 
cl? 

where the {Oh} are a complete set of renormalized dimension-six operators 
involving light fields which govern the b -+ s transitions. They consist of 
two current-current operators Or,r, four strong penguin operators 03-s, and 
electro- and chrome-magnetic dipole operators Or and Os, 

01 = (~o,r&b,)(qrfPLcc4, 

02 = (c,-d'Lbo)&d'PLco~ 1 

03 = (~=yrPLb,)C(~~yPPLqB) > 
4 

04 = (~,Q'Lb~) ~(W'PLqa) 7 
P 

0s = (ia,7,,PLbm) ~(‘&f’IpRd, 
9 

(10) 
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06 = (~,7~PLb0)C(~~7’pRq~p), 
9 

07 = &ms(&,+‘iab.)Fpw, 

0s = ~“&,~w~~o~~b~)Oa’ . 

The above effective hamiltonian is then evolved from the electroweak scabs 
down to p m m.6 by the Renormalization Group Equations (RGE). 

In the RG analysis, the Wilson coefficients are to be evaluated perturba- 
tively at the W scale where the matching conditions are imposed and then 
evolved down to the renormalization scale p. The expressions for the {ck} 
at the W scale are 

C1.3~-6(Mw) = 0 , c2(Mw) = 1 , 
c,(Mw) = -;F,(z,) , cs(Mw) = +0(q) . (11) 

D(Z) = 
x3 - 522 - 2x 322lnz 

4(” - l)J + 2(= - 1)J . 

The solution to the RGE at the leading logarithmic order is given by 

c;“(p) = u;(p,Mw)cf(Mw), 

(12) 

where C$r denotes the evolution matrix in a five-flavor context and is deter- 
mined by 

uS(ml,m2)kn = okf [#‘] 0: . (14) 

In the above we define 7 E a,(nr)/a,( ml an Zr = yg/2flo (not summed on ) d 
L), where /30 = 11 - 2nf/3 and 7 D = 0-r ytefl)* 0 is the diagonalized form 
of the 8 x 3 anomalous dimension matrix. We use the scheme-independent 
form of the matrix yell, which is given explicitly in Ref. (131 in terms of the 
number of Q = +2/3 and Q = -l/3 quarks present in the effective theory. 

Scaling again to the semi-leptonic decay, the branching fraction is now 
given by 

B 
6a v;bv,; 2 

I I kn=T*- . Kb 
14’bI12 . BE-X(U , (15) 
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The numerical values of the separate contributions to c;“(p) are, with ml = 
174 GeV (for illustration purposes), p = ms = 4.87 GeV, and a.(Mr) = 

0.124 as determined by LEPl14i, 

c;“(p) = 0.67Oc,(Mw) + O.O91cs(Mw) - O.l72~r(A4~), 

= 0.670(-0.195) + 0.091(-0.097) - 0.172 . (16) 

Taking the overall CKM factor in the branching fraction to be unity, and 
I&,l/lv&./ = 0.09, this procedure yields 

Bb-sr = (2.92:;::;) x lo-‘. 

The central value corresponds to p = mb, while the upper and lower er- 
rors represent the deviation due to assuming p = mb/2 and p = 2mb, re- 
spectively. We see that this value compares favorably to the recent CLEO 
measurement@) of the inclusive rate cited earlier in Eq. (2). When com- 
pared with the uncorrected result of Eq. (9), the QCD corrections are seen 
to increase the branching ratio by roughly a factor of 2. 

We take this opportunity to reflect further on the size of the QCD correc- 
tions. Earlier estimatesl15l of these corrections found that the enhancements 
to the b + s7 branching fraction were more than an order of magnitude for 
rnt < Mu,. This is because the effect of the QCD radiative correction to the 
weak vertexis to replace the GIM power suppression in Eq. (5) by a logarith- 
mic suppression. We explicitly illustrate this effect in Fig. 2, where we show 
the dependence of the cr Wilson coefficient on the mass of a single internal 
quark using the calculational procedure described above. In the lower of the 
two curves, the dependence of cr determined at scale ,U = mw is displayed, 
while the upper curve corresponds to the evolved cr evaluated at n = mb. We 
see that C&I = “lb) is a reasonably flat function of the intermediate quark 
mass, and that the corrections are substantial for light internal quarks, with 
an increase of 3-4 orders of magnitude in the rate for nap = 5 - 10 GeV. For 
the case of one heavy internal quark, e.g., b * vy with ml > Mw, we see 
that the GIM mechanism no longer plays such a crucial role and the QCD 
enhancements are not as dramatic. 
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Figure 2. Dependence of c, on Intermediate-quark Mass 

We now consider the case of radiative charm transitions. The IAcI = 1 
effective hamiltonian can be written as 

H;pI=~ = -4cF 
-&b~ck(/d%h 

k=l 
(18) 

with Xi = VzV,i as defined previously. The CKM structure of the operators 
differs dramatically from the b + 8-r case. Here, both Or and 0s have turo 
contributions which have approximately equal CKM weighting since 1, LX 
Xd. We stress that extreme caution must be exercised in order to correctly 
incorporate these terms. To be precise we explicitly separate Or and 0s into 
two operators according to their CKM structure, 

0 ,a = (~~Y&~d(~PYCPL~) 1 Olb = (~&~L’-$)(~L38r”~‘~~) I 

0 2.3 = (~~Y&~P)(-%d&8~, @!b = (~py,Pd~)(~d‘P~c~), 

(19) 

and write the remaining lhcl = 1 operators in a form analogous to their 
[AbI = 1 counterparts, 

03 = (LYrP‘b) ~(wY%?d 1 
s 
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04 = (fLYpPLC4) ~(m’pL%J I 
‘I 

OS = (%xYupLcP) ~(‘%-?~R’&3), 
9 

OS = (%‘Y,,PLCP) ~(@7’pR%), 
,d 

07 = ++ %(k~,wPR%)~‘, 

OS = & %(%~,wT:o~~c~)Gnp” , 

(20) 

where the terms proportional to m, in 0 ,,s have again been neglected. Since 
the quantity -& has been factorized in Eq. (18) above, the values of the 
corresponding Wilson coefficients at the matching scale are now 

c,.(Mw) = 0 ) ctb(MW) = 0 I 
c%(h) = -k/Ah , C2b(&V) = -xd/xb 

(21) 

The values of the Wilson coefficients for cf-s(M~r) are the same as in Eq. (ll), 
and the coefficients ct,s(M~~) are modified to 

C,(hf,y) = -; +(Zs) + &(rb) 
[ 1 I 

CB(&) = -; +(r,) + D(*b) , 
b 1 

with each containing intermediate s-quark and b-quark contributions. Due to 
the CKM dependence, c7,s(M~~) now contain both real and imaginary terms 
which in principle must be evolved separately. We note that the real parts of 
the Z.-dependent terms are numerically the same order of magnitude as the 
zb terms. Now we evolve the effective theory down to the scale p N m,. This 
takes place in two successive steps; first, we go from the electroweak scale 
down to mb working in an effective 5 flavor theory, and then to p < mb in 
an effective 4 flavor theory. This rocedure is similar to what is performed 
for the [AsI = 1 kaon transitions f1 i 1, where the effective theory is evolved to 
p u 1 GeV in 3 successive steps. We then have 

%;“(P) = u:,(~,mb)lT:,(tnb,M~“)7ie~(Mw), 

h;“(P) = V:,(~,mb)U;S,(mb,M,“)~cc,(MlV), 

10 
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and 

14”(P)IZ = 1774’(p)12 + Iznc;“(p)12. (24) 

The renormalization group evolution matrices U’ and Us are determined 
as in Eq. (14) now using a 10 x 10 anomalous dimension matrix @f. We 
take the anomalous dimensions of the split operators or.--6 and &,-s to be 
exactly those for Or and 02, respectively, as the anomalous dimensions do 
not depend on the CKM structure of the operator. We use the form of ye” 
as given in Ref. [13], taking care to keep n, = 4 and 5 as needed. The relative 
numerical values of the contributions to c T”(p) with p = m, = I.5 GeV are 

c;“(7r&) ‘v 7lcc;“(m,), 

= 0.458c,(?&) + O.l25cs(&) - 0.312]cs,(M,,,) + c2b(&)], 

= 0.458(-0.241 x 10-s) + 0.125(-0.139 x lo-‘) - 0.312 

= 0.458(-0.241 x 10-6) + 0.125(-0.139 x 10-s) - 0.312, (25) 

where the CKM unitarity condition A. + Ad = -& has been used to simplify 
the final term. Incidentally, it should be stressed that the choice of -&, as a 
prefactor in Eq. (18) was quite arbitrary, and we could have pulled out some 
other factor, say A, (or Ad). This would have affected the Wilson coefficients 
at the matching scale, but the final result would have remained, as it must, 
unchanged. 

We now compute the branching fraction. We evaluate Q, in the MS 
scheme (using a,(Mr) = 0.124 as before) and extend the range down to the 

charm scale using the Bernreuther matching conditionsl171 at the threshold 
p = ms = 4.87 GeV. Note that we have also taken the CKM matrix elements 
to be real and have neglected any possible imaginary components. Given the 
small values of cr,s(Mn~), this approximation is well justified. It is clear from 
the above that the cs(M~y) term completely dominates, due to the small 
contributions to c,,s(M~~,) from the light internal quark masses. This is in 
stark contrast to b + s transitions (and likewise to s + d), where the heavy 
internal t-quark forces the the magnetic dipole coefficients to be competitive 
with cr(Mw). This can be seen explicitly by comparing the above with 
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Eq. (16). The QCD-corrected branching fraction is then 

2 

B 
6~ v2v.b c-“, = - . - . WP)12 
r i I v,. 

.B D+-Xt+” 1 

= (4.21 - 7.94) x lo-‘*, (26) 

where the lower (upper) value in the numerical range corresponds to the 
scale p = 2mJm,). We see that the effects of the QCD corrections are quite 
dramatic in charm radiative decays, and that the rate is given almost entirely 
as a consequence of operator mixing. The stability of this result can be tested 
once the complete next-to-leading order corrections to the magnetic dipole 
transitions are known. 

Finally, we wish to comment further on the CKM dependence of the 
lAbi = 1 and [AC/ = 1 effective hamiltonians. We consider each case sepa- 
rately: 

(i) lAb1 = 1 transition: Here, the the t-quark contribution is seen to 
dominate in every respect. Thus, for the dipole operators Or and Os, the u- 
quark and c-quark loops are omitted because they are numerically tiny (e.g., 
see Table 2). Likewise, due to the smallness of the u-quark CKM factors, 
the approximation is made in the literature [I21 to omit any current-current 
operators containing u-quark fields. This explains why only the c-quark 
dependent operators 0,~ appear in the IAbl = 1 operator basis of Eq. (10). 
This assumption also explains another aspect of the analysis. Ordinarily one 
would expect 01,s to be accompanied by the CKM factor -X,, yet it is the 
prefactor & which appears in the effective hamiltonian of Eq. (9). This is 
because the tiny value of A, has allowed one to write the CKM unitarity 
relation as X, 2: -X1 and thus remove dependence upon X,. 

(ii) IAcl = 1 Iran&ion: In this case, the CKM dependence is more 
complicated since no single quark-loop is dominant. One must expand the 
operator basis as we did in Eq. (19). However, we wish to take note of a 
seemingly remarkable feature which occurs upon carrying out the RG analy- 
sis. The operators Or,, and Orb turn out to have equal anomalous dimensions 
and thus cr., and crb have the same numerical coefficient in Eq. (25). The 
most elegant way to understand this result is to exploit the U-spin symmetry 
present in the system of operators 0 i,,,rs and Or,,,!&. Thus, suppose instead 
of proceeding as we did, we replaced the operators Ora and Orb of Eq. (19) 
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with the equivaient set Ok, and O;,, where 

0 2.3 + o;, = $02. + O2b) 

= ; [(~=y,~~sp)(~~y’P~ca) + (.iipy,p~d=)(~~y’p~C)] 3 

O2b + o;, 5 ;(02. - O2b) (27) 

= ; [(~~,Y~P~J,)(~~Y’Pc~) - (a,r~PLd~)(~~yPPLc4)] , 

along with a corresponding replacement of coefficients, 

c2. * 40 and c2b - db . (28) 

The matching conditions for the modified coefficients would then have be- 
come 

A. + Ad 
c;,(~w) = -r\b = 1 and c;b(hh) = “-iAd , (291 

b 

with analogous replacements made also for Or. and Orb. Since the mixing 
of Oso and 02s with Or has no dependence on the mass of the internal 
s and d quarks, the operator O;, does not contribute to the process c -+ 
u + y due to cancellation between the s-quark and d-quark contributions. 
This cancellation is in fact just the manifestation of an underlying U-spin 
symmetry, That is, in the limit of neglecting quark mass, Oib carries U-spin 
1 and thus cannot couple to a photon. This decoupling occurs via the very 
s-quark and d-quark cancellation under discussion. As a consequence, the 
other operator Ok, must have the the same anomalous dimension as 0s. 
under RG flow, and we obtain the result cited above. 

As a corollary, it is clear that in the lAb\ = 1 transition, the approxima- 
tion made of omitting the u-quark current-current operators is quite unnec- 
essary. One could just as easily deal with an expanded operator basis con- 
taming u-quark fields analogous to that of Eq. (19) or by invoking an SU(4) 
version of u-quark/c-quark U-spin symmetry and proceeding as above. 

3 Long Distance Pole Contributions 

As seen in the previous section, the short distance contributions to charm 
radiative decays give very small branching ratios, even when the large QCD 
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enhancement is taken into account. There will, however, be additional con- 
tributions that appear as exclusive modes for which the momentum scale of 
the intermediate quarks is a strong interaction scale and not the short dis- 
tance scale Mw. This forces us to view the intermediate states as hadrons 
rather than quarks. These long distance contributions cau be partitioned 
into two basic classes. The first corresponds, at the quark level, to annihi- 
lation diagrams c& -L q& where a photon line is attached to any of the 
four quark lines. In terms of hadronic degrees of freedom, these give rise to 
the set of contributions which include the pole diagram. The second type 
of contribution corresponds to the underlying quark processes c - ql&q, 
followed by q2q + y. At the hadronic level, this is the so-called vector meson 
dominance mechanism. We shall discuss the pole amplitudes in this section, 
leaving consideration of the VMD mechanism for Section 4. 

The pole amplitudes are but a subset of an entire class of long-distance 
contributions, including the two-particle intermediate states and proceeding 
to all higher n-particle intermediate states. However, of these the most phe- 
nomenologically accessible are the single-particle or pole terms. The relevant 
diagrams, appearing in Figs. 3(a,b), are seen to fall into either of two basic 
classes. We shall refer to transitions as type I if weak-mixing occurs before 
photon emission, i.e. if the incoming D meson experiences weak-mixing, and 
as type II if photon emission occurs before weak-mixing, i.e. if the final 
state meson is created via weak-mixing. In principle, the intermediate states 
occurring in the type I and type II amplitudes consist respectively of all pos- 
sible virtual spin-zero and spin-one particles. We shall find it practicable, 
however, to take into account only the lightest such virtual particles. 

M-+c Di’,a. 
Figure 3. Pole Contributions 

In analyzing long range effects for flavor-changing D decays, we shall 
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employ the effective weak hamiltonian of Bauer, Stech and Wirbelllgl (BSW), 

7-1, = -$ [: u,(fid’)(a’c) + a&‘d’)(Gc) :] , 

where the colons denote normal-ordering and d’, J’ are the CKM-mixed fields 

d’ = Vd d + V.. 8 , 

a’ = V,s+V&d. 

We shall work in the 2 x 2 basis of quark flavors, 

(31) 

v= (;Y ;I)-( :g2 ;:g) . 

Specific forms for the Cabibbo-favored and Cabibbo-suppressed hamiltonians 
will be given shortly. The quark fields occur in left-handed combinations, 
denoted by 

(aq2) = GY,(l + 7sh2 I (33) 

and or,02 are free parameters whose values will generally depend on the 
mass scale being probed. Here, they are determined by fitting to D + Rx 
data120], 

IsI = 1.2 f 0.1 , a*(?r$) = -0.5 f 0.1 . (34) 

Pole Amplitudes of Type I 

Among the possible exclusive D decays, the most promising for experi- 
mental detection occur in the class of vector meson-photon (V7) final states, 

D(P) + W> W + 7(q,@) . 

For these, the transition amplitude has the gauge invariant form 

(35) 

MD-V, = s:(k, X)c!,(q, o) [dpv (p”p” - g”“q . p) + idPceP”4k,pp] . (36) 

The parity-violating ::nd parity-conserving amplitudes are denoted by An” 
and dpc respectively, and each carries the dimension of inverse energy. Both 
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amplitudes are generally required because the weak interaction does not re- 
spect parity invariance. The D + Vy decay rate is given by 

rD’“, = g W’I’ + WI’) , 

where q is the decay momentum in the D rest frame, 

Which particular combination of the parity-conserving and parity-violating 
amplitudes contributes to the decay process will depend upon the weak- 
mixing amplitude. In principle, a charm meson can mix with a sequence 
of either scalar {S,,} or pseudoscalar {P,) mesons. Although some work 

on scalar-mixing has been done,[lgl the outcome is rather model-dependent 
because detailed experimental and theoretical understanding about scalar 
states is lacking. In this paper, we shall therefore consider only the weak- 
mixing of charm mesons with light pseudoscalar mesons and thus work with 
only parity-conserving (PC) pole amplitudes. 

It is appropriate at this point to comment on the notation to be employed 
from this point on in both Section 3 and Section 4. We shall denote fp as 
the decay constant of pseudoscalar meson P and define hv,p as the coupling 
constant for the EM interaction vertex of the photon 7 with the mesons 
V, P. Also, the decay constant of vector meson V is given in terms of the 
V-to-vacuum matrix element of the vector current, 

(O]V,“IV*(q,X)) = 6”b$c;(q,A) 3 sabgve;(q,A) . (39) 

Note that we define two equivalent parameterizations, gv (with units of 
GeVs) and fv (dimensionless), for the vector decay constant: We have found 
that employing gv in the discussion of pole amplitudes alleviates notational 
confusion which would otherwise occur between the vector and pseudoscalar 
decay constants fv and fp. However, it is traditional to use fv in discussing 
VMD amplitudes, and we do so in Section 4. The constants {fv} are ob- 
tained from Pv-l+,- data and have recently been compiled in Table 1 of 
Ref. [3]. 

Now, a pseudoscalar state P which is created by weak mixing will prop- 
agate virtually until it eventually decays into the final state. This latter 
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transition is electromagnetic and hence parity-conserving. It has the ampli- 
tude 

: 

M V~P = hv,&k, +?(a ~k-‘%.m . (40) 

The absolute value of the coupling constant hv,p can be inferred phenomeno- 
logically by using 

Ihv+42 = ( 
12nrv+/191s (Mv > MP) 

4*rP-vJlq13 (MP > ‘w) 

The general type I decay amplitude A, for D + Vy is then given by 

&=(D + V7) = c hwa . ,2 ; ,,,* . (P$derr)~D) w (42) 
n D P” 

With Fig. 3(a) as a guide, the notation should be self-evident. 
Predictions for D - V-y decay amplitudes will be obtained below in 

terms of both type I and type II pole amplitudes, and in :Se next section we 
shall do the same by using VMD amplitudes. We can, however, accomplish 
somewhat more. In principle, the discussion for V-y final states extends to 
a larger set of meson-photon final states My, where the only restriction on 
meson M is that it have spin greater than zero. For each different type of M-r 
final state, there will be a gauge invariant D-decay amplitude like Eq. (36) 
and an MrP interaction vertex like Eq. (40). However, the generic form 
of Eq. (42) continues to hold, except that hv?p. is replaced by hM,p,. Of 
course, to have predictive power requires knowledge of the hM,p, coupling 
constant. Fortunately, much has been learned about radiative decays in light 
meson systems over the years. In particular, there are varying amounts of 
experimental evidence for 17 such transitions in the listing of Ref. [6]. Of 
these, 10 involve I- + O- mesonic transitions, 3 involve 2+ + O-, 2 involve 
l+ + O- and 2 involve O- -t l-. This information allows us to extend the 
analysis of type I amplitudes from just Vy final states to include both Ay 
and T-y configurations as well, where ‘A’ and ‘2” stand for axialvector and 
tensor mesons respectively. The Ay final states are very analogous to the 
Vy decays in that the coupling constant h.+pn is found via Eq. (41) and the 
D + A-y decay amplitude has the same form as Eq. (37). For the T-y final 
states, one uses instead 

IhT,pl* = 
&rT-P.r 

MS 
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as well as 
r&T, = !$ IdyI’ . (44) 

To summarize, we shall include in our study of type I amplitudes certain 
D -+ A7 and D --t Ty transitions. For the type II or VMD amplitudes, 
however, we shall limit our calculations to just the Vy fiual states. 

Cabibbo-favored (CF) transitions: 
In this case, the BSW hamiltonian becomes 

x!vcF) = -v.&.-s [: a,(ad)(k) + a2(sd)(iic) :] . (45) 

The calculation of weak-mixing matrix elements of D’s with the light pseu- 
doscalar mesons is straightforward and results are tabulated in Table 4. The 
fact that these mixing amplitudes are evaluated in vacuum saturation makes 
the forms in Table 4 easy to interpret. Thus, for example, in Cabibbo-favored 
0: decay, it is the term in the BSW hamiltonian with coefficient a, which 
contributes, and as such, the weak-mixing matrix element is naturally pro- 
portional to the decay constants fX and fDt. 

Table 4 Cabibbo-favored Mixing Amplitudes Table 4 Cabibbo-favored Mixing Amplitudes 

Mixing Mixing Matrix Element Matrix Element 
D:-tn+ D:-tn+ a,v~dv=:,‘f”fDtm~tGF/~/2 a,v~dv=:,‘f”fDtm~tGF/~/2 

Do + E” Do + E” QVudVc.‘fKfD&CF/fi QVudVc.‘fKfD&CF/fi 
D+-rr+ D+-rr+ 0 0 

For the decay constants of the light mesons we use 

fr = 131 MeV and fx = 161 MeV . (46) 

The present situation for the decay constants fD and fD, of the charm mesons 
is somewhat problematic. Experiment provides the upper limit for fD, 

fD < 290 Med , (47) 
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as obtained from the branching ratio determination .;rD+-rr+v, < 7.2 x lo-* 

at 90% confidence-level1211. Thus only theoreticai estimates exist for fD. 
These occur in three categories, lattice theoretic 1221, QCD sum rulel23l and 
quark model fits to color-hyperfine mass splittings1241. Estimates fall in the 
range 185 < fD(MeV) < 262. We shall adopt the value 

fy. N 216 MeV , (48) 

which is an average over the lattice estimates I251 and falls between the other 
two types of determinations. 

Recently, the following experimental results (in units of MeV) for fD. 
were announced by CLEO12@, WA75l271 and BES12@, 

I 

344 f 37 f 67 (CLEO) 
fD, = 232 f 45 f 52 (WA75) (49) 

434+153 t3s 
133 -33 @ES) , 

where the CLEO value is inferred from the ratio FDt-~+u,/I’Dt-Or+ along 
with the branching ratio B,t-++. In our numerical analysis, we shall use 
the following weighted average of the above decay constants, 

GT’. = 299 MeV . (50) 

For the sake of comparison, we note that this value is somewhat larger than 
the central value of a weighted average taken from a compilation of existing 
lattice estimates,l25l 

f:‘, = 242 MeV . (51) 
The only other ingredients needed are the radiative coupling constants hM.,p, 
which were defined earlier. Putting together all the necessary ingredients and 
ranging over the set of final state mesons M = p(770), K-(892), b,(1235), 
ai(1270), as(I320) and K;(1430) yields the magnitudes of type I pole-model 
amplitudes (in units of GeV-‘) given in Table 5. 

Table 5 Type I Cabibbo-favored Decay 

Mode IdrI (GeV-‘) 

0.’ - P+T 8.2 x 10-s 
0: 4 b:(1230)7 7.2 x 10-s 
Dt + at(1270)y 1.2 x lo-’ 
Dt - a$(1320)7 2.1 x lo-’ 
Do + k-O-/ 5.6 x 10-s 
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These values should be considered as upper bounds for the following rea- 
son. We have considered the lightest possible intermediate states, pions and 
kaons, because only for these particles is there sufficient data for determining 
coupling constants. However, the pion and kaon intermediate states propa- 
gate far off-shell. Instead of having a squared momentum near the mass-shell 
value q* = mZ,, the virtual pion must carry q2 = m$ > ml and similarly 
for the kaon. This effect could weIl suppress the transition amplitude. 

In principle, one is to sum over all pion-Iike and kaon-like intermediate 
states. Other possible contributions should be heavier and thus less affected 
by this suppression effect. For pion-like intermediate states, the next state in 
order of increasing mass would be T( 1300) and beyond that the unconfirmed 
state n(1770). Although there is not sufficient data to make a numerical 
estimate of their effect, we can anticipate for such states that 

(i) the propagator contribution will indeed be larger, 
(ii) the weak-mixing between a ground state D meson and a radially 

excited meson P, will be wave-function suppressed, 
(iii) the radiative coupling constant hM,p. might well be relatively smaller 

due to phase space competition with other decay modes of the massive meson 
P 

“‘W e would expect the net result of these effects to decrease the overall 
contribution from the excited states. 

Cabibbo-suppressed (CS) transiiiom: 
The weak-mixing now proceeds according to the weak hamiltonian 

‘H~cs) = -s [: al (v~&.(tZd)(&) + Vu,k&‘(ik)(ic)) 

+a2 (V..L*(is)(Cc) + x.iVCd-(dd)(Gc)) :] , (52) 

The action of the (dd) and (- ) p JS o era ors on the vacuum when expressed in t 
terms of the pseudoscalar meson states becomes 

(dd) = -0.7071v’ + 0.587 + 0.4077’ 

(ia) = -0.57~+0.82$ , (53) 
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where an 7 - 7’ mining angle Bp = -20” is adopted. 1261 In addition, we 
takel2gl 

f, = f,f = fr . (54) 

The mining amplitudes which are relevant for Cabibbo-suppressed decay ap- 
pear in Table 6. Observe that we have simplified the notation for Do transi- 
tions by expressing VdVd’ in terms of V,,V,‘. 

Table 6 Cabibbo-suppressed Mixing Amplitudes 

Mking Matrix Element 
D+ h r+ a,vudv~fifo+m;+GFId 
Df - K+ a,vu.v;.ftcf&m&,Gdfi 
Do * TO 0.7071a2Vu,v;fDo frm&,GF/2 
Do * 7 -l.l5azv,,v;fDo f,,m&,GF/2 
Do * ‘I’ O.&~v..~a fDo f,,tm;&F/2 

The analysis for Cabibbo-suppressed decays proceeds analogous to that 
for Cabibbo-favored decays, with one significant complication. For each of 
the Cabibbo-favored transitions, only one amplitude contributes. ‘For Do 
decay, however, all the Cabibbo-suppressed pole amplitudes contain a sum 
over v”, TJ and 7’ intermediate states. It is important to get the relative 
phases of the interfering amplitudes correct. We have therefore performed 
an analysis of the nine V’O + Pay couplings in light of the most recent data, 
where V” = p’, w”, 4’ and PO = v”, u and r) . ’ 13’1 The magnitudes of the 
Cabibbo-suppressed amplitudes are displayed in Table 7. 
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Table 7 Type I Cabibbo-suppressed Decay 

Mode IdyI (GeV-i) 
D+ - p+-y 1.3 x 10-s 
D+ - bf(l230)~ 1.2 x 10-s 
D+ - ar(1270)r 4.9 x 10-g 
D+ -+ ai(1320)y 3.4 x 10-s 
D$ * h-+7 2.8 x 10-s 
Df -* K;+(1430)7 6.0 x 10-a 
Do + pay 4.8 x lo-’ 
Do - we-y 6.1 x lo-’ 
Do - do-t 7.4 x 10-a 

Pole Amplitudes of Type II 

Analogous to the type I D + VT decay amplitude of Eq. (42) we have 

&;(D + V7) = c U’l’H!%X) . ,z _‘,z . hD;,D (55) 
n D D:, 

for the corresponding type II transition. From the viewpoint of phenbmenol- 
ogy, the type II transitions are more problematic than are those of type I 
because less experimental input is avsiIable. Thus, we shall need to rely a 
bit more heavily on theoretical predictions. 

The first difficulty is that the couplings hpo-rDor hD.+7D+r and hD.+lDt 
have not yet been experimentally measured. This is because, although the 
relevant photonic branching ratios have been measured, only upper bounds 
exist for the fuIl widths of the associated spin-one exited states, D”, I)‘+ 
and D;+, 

rDao < 2100 keV j rD’O-DO, < 764 keV 

rD.+ < 131 keV e rD’+4D+7 < 1.44 keV (56) 
r D:+ < 4500 keV * I?D:+-Dt, < 4500 keV . 

Fortunately, predictions for the rD’o-D07, rD.+-D+, and rD;+-Dt, transi- 

tions have appeared in the literature recently.131~ 32* 33* 341 There is some 
spread in predictions, and so we choose the representative values, 

rD.o-Doy = 20 keV , rD.+-D+-r = 0.5 keV , rD:+ -D?, = 0.3 keV , (57) 
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which implies 

hD.o,Do = 0.542 GeV-’ , 

h D.+,D+ = -0.087 GeV-’ , (58) 

h I D’+,Dt ~= -0.066 GeV-’ , 

where we have adopted the phases implied by the quark model. A rough check 
on whether the above values are reasonable is afforded by the nonrelativistic 
quark model, in which 

b-O+ = 2e[&++-1, 

b+,o+ = e[&-+-I, 

h D:++,Dt = ‘[&-&] 1 

(59) 

where the {Mk} are constituent quark masses, distinct from the current 
masses {mk) of Section 2. If we take MC z 1.64 GeV, as implied by a fit to D 
and D’ masses, then the relations in Eqs. (57-59) yield Mu z Md = 0.48 GeV 
and M, = 0.53 GeV. 

The other of the difficulties concerns the weak-mixing matrix elements. 
For type II transition amplitudes, the mixing occurs between charm and light 
vector mesons, as in 

(p+I’H, ID;+) = ‘hV,dV,.S,+g,:+GF/h . (4 
(‘30) 

In the above, the gv are the vector meson decay constants defined in Eq. (39) 
and whose determination we shah discuss shortly. As with the type I am- 
plitudes, we have employed vacuum saturation. To determine the action of 
the (dd) and (Is) operators upon the vacuum we employ the ideally-mixed 
vector meson states, so that 

(dd) = 5 and (SJ) = 4 . (61) 

For the light l- mesons, the collection {gv} of vector decay constants can 
be determined by referring to the vacuum-to-meson matrix elements of J&, 
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given in Table 1 of Ref. [3]. Together with isospin and W(3) relations along 
with quark model insights, these generate all the needed values, e.g. 

gp+ N 0117 GeV’ , 9K* = 
m$. 
m2gP+ 2: 0.22 GeV’ , . . . . (62) 

P 

To estimate the D;+ and D”’ decay constants, we invoke the heavy-quark- 
symmetry relations, 

m: = mD.fD, z 0.588 GeVr , 

9D. = mDfD ‘v 0.403 GeV* . (63) 

The magnitudes of the type II amplitudes thus calculated are given in Table 8. 

Table 8 Type II Decays 

Mode I4 (GeV-‘) 
Dt - P+T 1.9 x 10-s 
D7, + $Qy 5.9 x 10-s 
D+ -t p+y 3.6 x 1O-9 
Dj’ + K’+y 5.1 x 10-s 
Do + pay 4.7 x 10-g 
Do + way 6.9 x 1O-8 
Do + 4O7 1.6 x 10-s 

D’ excitations with spins not equal to one will not contribute to type II 
amplitudes if we adhere strictly to the hamiltonian of Eq. (30)L3] and continue 
to work within the vacuum saturation framework. The reason is that mesons 
with J > 1 cannot have a nonzero matrix element with the vacuum via the 
current @yP(l + 7s)~. The possibility of an intermediate charm meson with 
J = 0 is disallowed since it could only mix with a final-state J = 0 particle 
and the decay of a spinless particle to another spinleas particle plus a photon 
is forbidden. 

Although we have considered just final state vector mesons in Table 8, 
it should be obvious that in principle the spin-one intermediate D’ states 
can also mix weakly with axialvector final state mesons. Unfortunately, one 
knows less about the decay constants of axialvector mesons than one does of 
the vector mesons. 
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4 Long Distance -yMD Contributions 

The VMD contribution to charm meson radiative decay is depicted in Fig. 4, 
where a D meson is seen to (i) decay weakly into a final state of a vector meson 
V and a meson M of nonzero spin, followed by (ii) an electromagnetic VMD 
conversion of V into a photon. Roughly speaking, in the VMD approach the 
D - My amplitude is obtained by multiplying the D 4 MV amplitude 
by the factor e/f” where e is the electric charge and fv is the dimensionless 
version of the vector meson decay constant defined in Eq. (39). It is important 
to keep in mind that in the VMD process D + MV, the vector meson V is 
off-shell; Thus, to obtain the VMD amplitude for D - My wilI require an 
extrapolation from p$ = rn:. to pf, = 0 for both the V + 7 vertex and the 
D * MV transition. For our considerations, the main intermediate states 
wilI involve virtual rho and phi mesons. We shall employ the observation 
made in Ref. [35] that the rho-gamma vertex seems to be unafIected by 
the extrapolation whereas the phi-gamma vertex is reduced by a factor of 
q+ E fi. In the following, we will consider a number of examples for the 
case M = V, and so we shall be working with VMD chains which begin with 
the process D + VV. Since the VV final states have L = 0, 1,2 as allowed 
orbital angular momentum values, the VMD amplitude will in generalhave a 
parity-conserving part A&, corresponding to the VV P-wave and a parity- 
violating part drho corresponding to the VV S-wave and/or D-wave. 

I 

V 

D 

< 
M 

Figure 4. VMD Contribution 

In practice, there are two means for determining the D + MV part of a 
VMD amplit::de for D + My: 

1. One can input D -+ MV experimental data directly in order to phe- 
nomenologically determine the D -+ MV amplitude. In this approach, 
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it is crucial to maintain gauge invariance. A careful discussion of 
how to construct a gauge invariant amplitude was recently given in 
Ref. [3] (which considered this type of empirical VMD contribution 
to B + K’T), so we need not detail this procedure here. Since the 
database for D + MV transitions is unfortunately small, the ability 
to generate VMD amplitudes using this phenomenological method is 
limited. 

2. One can employ some theoretical description to model the D -t MV 
amplitude. Since the models currently available do not always reli- 
ably reproduce branching ratios and polarizations of final-state vec- 
tor mesons in decays of heavy mesons, [36] this method is also not 
beyond criticism. For definiteness, we shall continue to employ the 
BSW model[lgl introduced in Section 3.[371 Within this approach, the 
squared VMD amplitude for the important case where M is a vector 
meson becomes 

,dVMo,2 = ~Iv=tvd 
2mbkr 

a)(m,2)fiZ 

x 
4krm&Vs(q,2) 4xa 

(mD +W)‘A?(d) + (mD + m,,)2 x z , (64) I() 
where /k] is the photon spatial momentum, q represents either of the d 
or s light quarks, and Z is a process-dependent isospin coefficient. The 
BSW coefficients aI and as(mz) which correspond to the color- 
favored and color-suppressed operators are given in Eq. (34). The 
remaining notation is explained by noting that in the factorization 
approximation for D + ML”, one of the final state particles, which 
we call X (either M or V), couples directly to the vacuum and the 
other, which we call Y (either V or M), appears in the D-to-Y matrix 
element of the charged weak current .& Thus the quantity fx is the 
decay constant of X, and AI and V(q’) are the semileptonic form 
factors defined by 

WPI~M,$‘(PN = 
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+i (mD + mv)A1(4%” - mD + my 

In the VMD amplitude, the form factors are to be evaluated at qi = 0 
ifX=Vandatqi=mL if X = M. Throughout, we shall make 
use of the form factors as measuredl38l in D -+ K’lv and also employ 
SU(3) relations as needed. This should provide a good estimate of 
the form factors appearing in the D-to-p and D-to-4 matrix elements. 
Whenever the form factors are to be evaluated at momentum transfers 
other than at q* = 0, we shall use a monopole form to extrapolate from 
q2 = 0. This amounts simply to dividing the form factors at q* = 0 by 
the quantity 1 - qZ/m&,e. 

In the following, we shall give VMD predictions for a number of specific 
D -4 My decays, grouped as Cabibbo favored, singly suppressed or doubly 
suppressed. In the few cases where we can employ both the above approaches, 
we shall refer to them respectively as ‘Meth. 1’ and ‘Meth. 2’. Given the 
lack of abundant D + IMV data, however, we shall be forced to adopt the 
theoretical approach of Meth. 2 in most cases. 

Before we can proceed, there is another topic which must be addressed, 
the dynamical complication of significant Final State Interactions (FSI). Al- 
though presumably not a problem in B -P MV decays, detectable FSI are 
known to exist in the D-meson mass region. This can produce an ambiguity 
in the VMD analysis because FSI will inherently be part of any VMD am- 
plitude obtained from D + MV data, but will not be present in the BSW 
construction. It is difficult to remove the effect of FSI from the phenomeno- 
logical VMD amplitude because the vector meson V is to be taken off-shell, 
and FSI might have an important kinematic dependence, i.e. the pc depen- 
dence of the FSI has also to be taken into account. Consequently, any FSI 
effects entering in data may not be present to the same extent in the VMD 
amplitudes. As regards the factorization construction (Meth. 2 above), the 
exclusion of any FSI effects in the BSW amplitude amounts de facto to a 
specific prescription for the p2,-dependence of the FSI. There is some infor- 
mation on the p$-dependence of the 7 - V couplings and of certain matrix 
elements, but it is not possible at this time to separate the two effects. As 
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we show in the Appendix, the effect for p emission in Av(1320) decay can 
be as much as a factor of two. By contrast, no such suppression is seen in 
pphotoproduction, although in +photoproduction an effective reduction of 
about 4 in amplitude is observed and a somewhat smaller effect of 0 is 
seen in w-photoproduction. 

Cabibbo-favored Modes 

Do + kO.7: This is an instance in which the phenomenological approach 
is applicable since experimental information on the D -+ MV intermediate 
state is available. There is a branching ratio determination 16’ &W,,+O,,, = 
(1.6 f 0.4)% and the amplitude is known to be (i) almost all transverse and 
(ii) almost all S-wave. i This allows us to write the VMD contribution to 
Do + k’Oy as 

dp’ VMD = c . 
aDO,R-oa 

fP m& ’ 
An’ VMD = o 3 (Meth. 1) (66) 

where we follow the notation of Ref. [3] and denote oDL,R.0@ as the phe- 
nomenological S-wave amplitude for Do * k”p’. With rD0,,+O.$ + 2.53 x 
lo-r4 GeV and aDO,R.og = 1.63 x 10m6 GeV, this yields dP;MD(Do + Z?O,) 
of about 6.8 x 10-s GeV-‘. The data on Do + k’“po is consistent with no 
parity-conserving (P-wave) contribution. 

Alternatively, the factorization approach of Eq. (64) predicts both am- 
plitudes. In this case, we take ai = as, and the vector meson to be mixed 
with the photon is the p”, so that V = p” and X = Z@. The form factors 
needed are those entering in D + p semileptonic ‘transitions. Making use 
of the measured D + K’ form factors implies Z = l/2. To extrapolate 
the form factors from q* = 0 to q* = m$., we use a monopole form where 
the D’ is the nearest singularity. The parity-violating and parity-conserving 
amplitudes are given in Eq. (64) by the terms involving the Al and V form 

‘The Particle Data Group also Iistr branching ratios of (3.0 f O.B)% and (2.1 i 0.6)% 
for S-wave and D-wave respectively. Ial These vabxa arc completely consistent with the 
fret that the totd tranavenc mode (which must be entirely S-wave by the absence of any 
P-rwe) i (1.6 f OS)% md that the S-wave (Ion&udbI) must cancel with the D-wave 
to produce the net scro longitudid branching ratio. 



factors respectively. Using fk. = 0.2 GeV* we obtain 

dp’ VMD = 5.1 x 10-s GeV-’ , dp’ VMD = 3.8 x lOma GeV-’ . (Meth. 2) 

(67) 
We notice that dP’ vMD is in reasonable agreement with the one obtained from 
the use of data from the nonleptonic mode, given the large uncertainties 
involved in these predictions. Indeed, the factorization estimate for the Do + 
Zf’J’pO S-wave amplitude gives ogO-RSO@ = 1.3 x 10S6 GeV-’ which is within 
20% of the experimental value. It also predicts a P-wave branching fraction 
of 0.15% for Do + @-p”, which is below the current upper limit of 0.30%. 

0; + p+y: The VMD amplitude for this decay proceeds via Df -+ +p+ 
followed by b-7 mixing. Although the branching ratio for Df -+ 4pp+ is 
known to be (6.5 zti:t %), no information on helicities or partial waves exists, 
so we cannot apply the phenomenological method here. Turning instead to 
the factorization approach of Eq. (64), wehaveX=V=dandY=M=p+. 
Therefore we require the Dt + 4 semileptonic form factors evaluated at 
q{ = rnz. Although there is experimental information on these decays, the 
branching fraction and the form factors depend strongly on ED?-++, which 
is still very uncertain. Thus, again making use of D --+ K’ data, taking Z = 1 
and with a decay constant of gp 2: 0.17 GeV*, we find 

dv’ VMD = 3.2 x IO-’ GeV-’ and dpc VMD = 2.8 x 10-s GeV-’ . (68) 

The Cabibbo-favored VMD amplitudes are summarized in Table 9. 

Table 9 Cabibbo-favored VMD Amplitudes 

Mode IdvMpI (lo-’ GeV-‘) 
Parity-conserving Parity-violating 

Do + K-O7 3.8 5.1-6.8 
Dt + P+Y 3.2 2.8 

. 

Singly Cabibbo-suppressed Modes 
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Do + pay: This process can proceed via two different intermediate states, 
namely p”q5 and pope. There is one known branching ratio Bo~,po+ = 
(1.9 f 0.5) x 10-s with no hehcity (or partial wave) information. Letting 
t7r be the transverse fraction of the observed branching ratio, 7s the S-wave 
fraction in the transverse mode, and qp the P-wave fraction, we then obtain 
for the S-wave amplitude of Do + p”qt, 

aD.+mD,/~=7x10-‘fiGeV , (69) 

and for the corresponding P-wave, 

b-,++ 
mm, 1.46 x 10-s- GeV-’ , (70) 

where again we employ the notation of Ref. [3] in denoting bDo,,,04 as the 
phenomenological P-wave amplitude for Do + pod. Then, multiplying by 
the VMD factor e/f*, we obtain the Meth. 1 estimate 

dp’ VMD = 0.60 x lo-’ GeV-’ and Ape “MD = 1.0 x 10-s GeV, (71) 

for qr - 0.5 and 7s - 0.66. On the other hand, there is no available 
experimental information for Do + pop’, other than BnO,,+,-v+,- = (8.3* 
0.9) x lob3 which can be taken as an upper limit. Let us also estimate the 
Do + ~~7 mode in the factorization approach, which can be used to predict 
both the off-shell amplitudes, Do -+ p”4 and Do -+ pope. In both cases we 
need the Do + p” form factors, for which I = l/2. Using Eq. (64) we obtain 

d&,(p’d * ~‘7) = 0.22 x 10-s Gev-’ 

d&,(p’+ + ~‘7) = 0.18 x 10-s Gev-’ 

d&n(p”po + p”7) = 0.75 x 10-s Gev-’ 

-Gi,dp”po + P’Y) = 0 . (72) 

Our estimate for the parity-conserving pop0 + pay transition is based on the 
observation that an on-shell P-wave pop0 state is forbidden by Bose statistics 
and hence the associated off-shell amplitude will be suppressed. First, let us 
compare the first two rows in Eq. (72) with the results obtained in Eq. (71) 
by making use of the p”qS data. We can see that the factorization amplitudes 

30 



are lower, as caused by smaller predictions for the n~leptonic intermediate 
modes. In general, factorization predictions will be modified by FSI. For 
instance, in the case at hand there could be a large enhancement due to 
K’K’ + pod rescattering effects.13gl If this is the case, this effect strongly 
depends on the kinematics and it is different in the off-shell nonleptonic am- 
plitudes entering in the calculation of the VMD diagrams. The factorization 
approach provides a prediction which is free from FSI effects. In these cases 
we will take these two estimates as the allowed range. On the other hand, 
factorization predicts that the pop0 intermediate state provides most of the 
VMD amplitude. When both intermediate states are taken into account in 
the factorization estimate, the predictions of Eq. (71) and Eq. (72) roughly 
agree. This will not be the case for the following mode. 

Do + +y: Now, there is only one nonleptonic intermediate state, 4~‘. 
The amplitudes as extracted from Do -+ dp” data are 

dp’ VMD = 
elf, - 
elfd 

-‘%kD IDo-8, = 2.1 x 10-s GeV-’ , 

dpc VMD = 3.5 x 10-s GeV-’ . (73) 
On the other hand, factorization predicts the much smaller amplitudes 

dp’ ,,MD = 0.7 x 10-s GeV-’ and A& = 0.6 x 10-s GeV-‘. (74) 
Part of the difference between the predictions in Eq. (73) and Eq. (74) may 
be due to the presence of FSI effects in the on-shell amplitude measured and 
used in Eq. (73) and the assumed absence of FSI in Eq. (74). In Table 10 we 
include both predictions as the allowed range. 

Do + w-y: This mode is very similar to Do -t pay and we obtain from the 
factorization approach of Meth. 2 

As’ VMD = 0.7 x 10-s GeV-’ and drMD = 0.6 x 10-s GeV-’ . (75) 

D+ + p+r: Here, the mode D+ + pfpo should give the dominant contri- 
bution to the VMD amplitude, implying the Meth. 2 amplitudes 

A?= lMD = 1.9 x IO-’ GeV-’ and dyMD = 1.6 x IO-’ GeV-’ . (76) 
Incidentally, the expectation for D+ + pfpo is that its branching ratio should 
be at least 0.4%. 
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Dt -+ K’+T: Proceding analogously, we use the factorization estimate of 
0: + K’+p” to express the VMD amplitudes for Dt + Kg+7 as 

dp’ 
= GF a2 mpfp -- 

“MD = ?;;aA(“D. +“W*)xmD,E, , (77) 

dp’ 
2 V 

VMD = 
4 ET dp’ 
mK.mp 

VMD ’ 
(mD, + mK-)‘z ’ 

Upon taking the form factors to be identical to those in D+ -t I?O in the 
SU(3) limit, we have 

dp’ VMD = 1.0 x 10-s GeV-’ and dpc VMD = 0.9 x lo-* GeV-’ . (78) 

Our VMD predictions for the magnitudes of the Cabibbo-suppressed tran- 
sition amplitudes are summarized in Table 10. 

Table 10 Cabibbo-suppressed VMD Amplitudes 

Mode ldvMo( (IO-’ GeV-‘) 
Parity-conserving Parity-violating 

D+ -) p+y 1.6 1.9 
Dt + K-+7 0.9 1.0 
Do --) pa-y 0.2 - 1.0 0.5 - 1.0 
Do + way 0.6 0.7 
Do + q4O-y 0.6 - 3.5 0.9 - 2.1 

Doubly Cabibbo-Suppressed Modes 

Finally, to estimate the size of the doubly Cabibbo-suppressed modes, we 
consider the D+ -+ K’+r transition. Upon computing the amplitudes using 
the factorization expression of Eq. (64), we obtain 

dp’ VMD = 4.2 x 10-s GeV-’ and dpc VMD = 4.4 x 10-s GeV-’ . (79) 

Similarly, we find for the mode Do + K”y 

dp’ VMD = 1.75 x lo-’ GeV-’ and drMD = 1.83 x 10-s GeV-’ . (80) 
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5 Summary and rConclusions 

The existing database for direct evidence of radiative D decays is meagre, 
as has been shown in Table 1. However, interesting levels of experimental 
sensitivity are currently being attained and we can anticipate the detection of 
radiative signals in the not-too-distant future. Our motivation in undertaking 
the study reported here has been to stimulate such experimental efforts. 

As shown here, weak radiative decays of charmed mesons are not domi- 
nated by the short distance penguin diagrams of Figs. l(a),l(c), but rather 
by long distance processes involving nonperturbative strong interaction dy- 
namics. From the standpoint of probing the inner workings of the Standard 
Model, one might have naively hoped to use radiative charm decays in order 
to observe the short distance process c -+ uy. This would be in analogy 
with radiative B-meson decay, where the amplitude is dominated by the 
penguin transition b + sr and receives a large enhancement from QCD ra- 
‘: ,.?.tive corrections. By contrast, the corresponding c + ur charm transition 
i; minuscule at lowest order and would require an unexpectedly large QCD 
enhancement to become detectable. To our knowledge, the calculation per- 
formed here of the QCD radiative correction to c + u7 is the first explicit 
and detailed analysis of this system given in the literature. In addition, we 
were able to employ U-spin arguments to clarify the role played by neutral, 
flavor-changing operators such as Gcrjq which contribute to the expanded 
operator basis in the RG analysis. Our conclusion that the c -) UT QCD 
radiative corrections are substantially larger than for b + sy is due in part to 
the large operator mixing at the lower renormalization scale associated with 
the c-quark and in part to the disparate sizes of the Wilson coefficients at the 
matching scale of the contributing operators. Nevertheless, the radiatively- 
corrected c + UT penguin transition remains extremely small. The main 
sources of suppression are the small quark masses and also the CKM factors 
IV~V~l* occurring in the numerator of the c + UT branching fraction in 
Eq. (26). In the Wolfenstein parameterization, with sin& = X, this CKM 
dependence amounts to a Xl0 suppression in decay rate. 

On the other hand, we have shown in Sections 3 and 4 that long distance 
contributions are several orders of magnitude larger. A very rough estimate 
of the typical branching ratio to be expected is 

non-lept. 
BD-M, - G~BD-M , (81) 
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where BD+, non-‘cp” is the branching ratio for the nonleptonic D decay to some 
final state M. Thus, typical branching ratios of order Bglp. - (0.001 - 
0.05) would induce radiative branching ratios in the range BD-M, - (7 x 
lo-* + 4 x lo-‘). In Sections 3 and 4 we have performed a more detailed 
analysis by modeling the nonperturbative dynamics. 

Inspecting the long distance contributions to the set of exclusive processes 
DO + py, Do + q, D, + K’+-y and D+ + p+7 for which c + ur is 
the underlying transition, we see that the VMD and pole amplitudes carry a 
single factor X, therefore representing an enhancement of A’ over the penguin 
amplitude. As can be seen in Table 11 the expected branching fractions for 
these modes are in the 10v6- lo-’ range, whereas we estimate B,,,, - 10-r*. 
As a consequence, c --) uy is not a good process to test the validity of the 
Standard Model. That is, a hypothetical contribution from new physics 
would have to be extremely large in order to overcome the long distance 
physics. 

The situation is very different in radiative B decays. The short distance 
transition b - 57 has the same CKM structure as the corresponding long 
distance contributions. For instance, the mode B -+ K’7 might conceivably 
have long distance contamination of the order of 20% in the rate 131. Although 
this is small compared to the charm case, it would be desirable to reduce the 
uncertainty in the calculation of these effects in order to subtract them from 
the measured signal. Moreover, long distance effects could also be affecting 
the inclusive b -+ 57 branching ratio, therefore limiting the precision with 
which the Standard Model can be tested in these decays. 

The various amplitudes are summarized in Table 11 and are given there in 
units of IO-* GeV-‘. In principle, the most conservative attitude is to take all 
relative signs as unknown, which would render the calculation of branching 
ratios highly uncertain. Fortunately, with the aid of the quark model we can 
reduce this ambiguity. The relative sign of Pole-II to Pole-I contributions is 
afIected by (i) a minus sign difference in the pole denominators, (ii) an extra 
minus sign in type-II amplitudes due to the vector meson propagator, and 
(iii) minus sign differences in the VP7 couplings between the c-quark and 
light-quark EM sectors. In a quark description of a ql@ meson, this latter 
sign is inferred by studying 

hYh==($+$) . 
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Although this line of reasoning narrows down the range of predictions sig- 
nificantly, experimental data will be needed to obtain information regarding 
the relative phase between the pole and VMD contributions. In this regard, 
it will be helpful to note that, at least in our approach, the parity-violating 
amplitudes arise solely from the VMD process. 

Tal 

Mode 

D:P+Y 
DOR’Oy 
D:‘$r 
Dt4r 
X47 
D+P+Y 
D+ b:y 
L)+a:y 
D+a$y 
D; K’+? 
D$ K;+? 

Doper 
DOWOr 
Dodo 
D+ K-+-y 
DOK’Oy 

11 Amplitude and Branching Fraction ! 

dpc dp” 
VMD 
f2.8 

P-I P-II VMD 
6.2 -1.9 f3.2 
5.6 -5.9 f3.8 
7.2 - - 
1.2- - 
2.1 - - 
1.3 -0.4 f1.6 
1.2- - 
0.5 - - 
3.4 - - 
2.8 -0.5 f0.9 
6.0 - - 
I.5 -0.5 f(0.2 - 1.0) 
1.6 -0.7 f0.6 
1.7 -1.6 f(0.6 - 3.5) 
1.4 -0.1 f0.4 
1.2 -0.3 f0.2 

k(5.1 - 6.8) 
- 
- 
- 

f1.9 
- 
- 
- 

fl.O 
- 

‘~(0.6 - 1.0) 
l 0.7 

k(O.9 - 2.1) 
*0.4 
l 0.2 

- 

:dictions 

BD-M, (lo-‘) 

Pre 

i 

- - 

6 - 38 
7 - 12 
- 6.3 
- 0.2 
- 0.01 
2-6 
- 3.5 
- 0.04 
- 0.03 
0.8 - 3 
- 0.2 

0.1 - 0.5 
z 0.2 

0.1 - 3.4 
0.1 - 0.3 

z 0.01 

Finally, let us comment on the inclusive photon spectrum. In the B 
system, the quark transition b + ST provides a useful framework for pre- 
dicting properties of the hadronic inclusivedecay B + X,7. Thus, one 
estimates the B + X.7 decay rate by computing the b + s7 decay rate 
and normalizing relative to the semileptonic decays to eliminate undue de- 
pendence on the mass ms. Likewise, one predicts the photon energy spec- 
trum in B + X.7 decay by referring to the underlying two-body b + sy 
decay.14q.[411 If quarks were free, there would be a monochromatic photon 
spike at E, = (rni - m:)/2ms ‘Y ms/2. In reality, the photon spectrum be- 
comes broadened via hadronization of the s-quark jet. The individual strange 
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mesons (K’(892), K,(1270), etc) which populate the inclusive final state X, 
originate predominantly from the s-quark jet hadronization. These explana- 
tions of B + X.7 inclusive decay are in accordance with the spectator model, 
and so isospin symmetry should manifest itself event-by-event. For example, 
the rates for isospin-related modes such as B” + K”y and B- + K.-y 
should be equal. A deviation from this pattern would constitute evidence for 
either non-spectator or new-physics contributions. In a heavy-quark effec- 
tive theory description, such non-spectator etIects would occur at subleading 
level. 

The theoretical description of charm inclusive decay could hardly be more 
different. Now, there is no emergent light-quark jet which hadronizes to form 
the set of final states. Instead, the ‘black box’ of long-range effects such 
as pole-amplitudes, VMD-amplitudes, eic dominates the physics. Thus, to 
determine the photon energy spectrum in D + X.7, one would sum over 
the most important of the exclusive radiative modes. Presumably this would 
yield a reasonable description at least over the part of phase space where the 
photon energy is largest. It would be prudent to be on the lookout for the 
unexpected. For example, exclusive modes in light meson radiative decay are 
known to exhibit rather large isospin-violating effects, as in 

~K.O,KO, 

~K-+-K+~ 
= 2.27 f 0.30 and rfl-U% 

r,+ 
= 1.76 f 0.49 . 

-.*+.r (83) 

If this effect were to be maintained mode by mode in the exclusive D decays, 
it would lead to interesting levels of isospin violation in the inclusive decay. 
Of our results, Table 11 indicates that the likeliest possibility for isospin 
violation would appear to be in Do + POT/D+ + p+r. 

Charm radiative decays give us the opportunity to study various aspects 
of long distance dynamics. We have seen that the theoretical predictions of 
the branching fractions are, in some cases, rather uncertain due to model 
dependence. Experimental information will therefore be needed to complete 
the theoretical picture of these decays. It is an interesting irony that the 
understanding gained from future observation of different D radiative decays 
cm then be used to predict more confidently the size of such effects in B 
decays. 
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Appendix: VMD in Light-Meson Radiative Decay 
The original application of VMD for analyzing hadronic radiative decays 

occurred in the light meson sector. 1421 In order to test the VMD method using 
an up-to-date database, we too shall consider (briefly) light meson radiative 
decays in this Appendix. As we shall see from our study of two particularly 
clean examples, the situation is encouraging but not uniformly so. First, we 
shall revisit the original arena for testing VMD, the p and w decays into pion- 
photon final states. Then we shall analyze decays of a higher mass state, the 
tensor meson Az(1320). We stress that in each of these cases the transition 
is purely electromagnetic, unlike the more complicated electroweak decays 
treated in the main body of the paper. Therefore, the ‘pole’ amplitudes do 
not occur here since there is no weak mixing, so one obtains a clean look at 
the VMD contribution. 

Radiative Decays of the Vector Mesons p and Y 

There are three electromagnetic P-wave decays in the p - w system, 

w + “Or , Pf +z+y and pa + “‘7. (84) 

In the VMD approach, these are described in terms of two electromagnetic 
mixing amplitudes, WY and w, and one strong interaction vertex; gup. 

Due to the off-shell nature of the VMD amplitudes, different momentum 
regions occur in the wpa vertex for the transitions of Eq. (84). In w -+ x7, the 
intermediate p propagates at q2 = 0 whereas for p + x-y it is the intermediate 
w which propagates at q2 = 0. Part of the VMD folklore built up over the 
years is that extrapolation of the light vector meson squared-momenta from 
the meson mass-shell to the photon mass-shell does not strongly affect the 
decay amplitude. The ratio of p and w decay widths can be used to test this 
as follows. Recall that for the VMD description of I- + 0-y transitions, the 
strong vertex gUpn is related to the decay width P via 

g pr = f2 12wr “s 
Y [ 1 Y’lslJ ’ 

where f --t f, for w decay and f + fy for p decay. Noting that the decay 
momenta in w + “7 and p + r-y are almost equal, one has 

1g1= \jE=3.24*0.19, 
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provided the same strong vertq is used in each decay. In the above, we have 
used the charged-p decay width in view of its superior accuracy. The value 
appearing in Eq. (86) is seen to be in accord with that inferred from vector 
meson decay into lepton pairs (cf Table 1 of Ref. [3]), 

I I 
L =339fOlO 
f, . * . 

(87) 

Alternatively, one can use each of these radiative decays to extract deter- 
minations of gup* as in Eq. (85), and one finds 

(11.73 i 0.35) GeV-’ (w + ~‘7) 

9 wF = 

{ 

(12.40 i 0.64) GeV-’ (p’ + n+r) w 
(16.40 f 2.1) GeV-’ (p” + ~‘7) . 

The w -S x07 and p+ + x+7 determinations are seen to be consistent within 
experimental error. This is significant because these decays involve different 
momentum extrapolations as discussed above. The larger coupling obtained 
from p” + 7r07 decay has substantially larger errors. We now turn to a 
different transition in which, if one accepts the data at face value, a non- 
negligible momentum dependence is present. 

Decays of the Tensor Meson Az(1320) 

The meson Az(1320) has been observed to decay into both the rp and ny 
modes, with branching ratios 

BA,-*~ = 0.701 rh 0.027 and BA,+ = (2.8 ct 0.6). 1O-3 . (89) 

These data turn out to provide a particularly clean test of the VMD method 
in two respects. First, there is just a single partial wave in the final state. As a 
consequence, the decay rates alone can be used to test VMD without any need 
for polarization information of the finsl state particles. The occurrence of a 
single orbital angular momentum in the final state follows from conservation 
of parity and of angular momentum. Thus we have 

P: + = (-)‘(-)L + L=O,2,4,... (90) 

37: 121 = 11 +LI * L = 1,2,3 (91) 
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which implies that L = 2. In addition, of the three light vector mesons p,w, 4, 
only the p can appear together with a pion in a final state of As decay. The 
reason is that the decay A* + * V (V is a vector meson) proceeds through 
the strong interactions and conservation of G-parity forbids the xw and x4 
modes. Thus, the rho is the only light vector meson involved in the VMD 
determination and interference with w or 4 mediated processes is absent. 

The amplitude for the transition At(p) + r(q)+p”(k) can be written ss 

4 = $f-h~t(k)p.b.(p)q” , (9‘4 

where gxP is a dimensionless quantity and h+(p) is the spin-two polarization 
tensor of the AZ. From the decay rate relation, 

7. a 
r 9rp qrp 

A:-+,+’ = Gz 1 

one determines a magnitude for the coupling grp. This can be used, in turn, 
to predict the radiative coupling grr via the VMD formula 

and we find 
gyD = 1.99 f 0.06 . (95) 

Alternatively, it is possible to determine the pion-photon coupling direcfly. 
Analogous to Eq. (92), we can write down a gauge-invariant photon-emission 
transition, 

-4, = ~~“‘%&)q&sqO . 

Fixing the coupling grr in terms of the decay rate 

(96) 

(97) 

yields the value 
gz’ = 0.98 zt 0.11 . (98) 

Thus, one obtsins a factor-of-2 discrepancy between the empirical ampli- 
tude and the VMD prediction, with the VMD value being the larger. Several 
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possible explanations for the lack of agreement come to mind. Although 
the radiative branching ratio given in Eq. (89) has reasonably small error 
bars, the signal is based on only one experiment. Alternatively, there may 
be unexpectedly large momentum dependence in the Azrp vertex. Thus, as 
one proceeds from the rho mass-shell (k* = m$) to the photon mass-shell 
(k* = 0), a ‘softening’ might occur in the VMD estimate. However, to our 
knowledge there is no previous evidence for such momentum dependence for 
the p extrapolation. 
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